Singularity: Pattern Fuzzing for Worst Case Complexity

Abstract

We describe a new blackbox complexity testing technique for determining the worst-case asymptotic complexity of a given application. The key idea is to look for an input pattern —rather than a concrete input— that maximizes the asymptotic resource usage of the program. Because input patterns can be described concisely as programs in a restricted language, our method transforms the complexity testing problem to optimal program synthesis. In particular, we express these input patterns using a new model of computation called Recurrent Computation Graph (RCG) and solve the optimal synthesis problem by developing a genetic programming algorithm that operates on RCGs. We have implemented the proposed ideas in a tool called Singularity and evaluate it on a diverse set of benchmarks. Our evaluation shows that Singularity can effectively discover the worst-case complexity of various algorithms and that it is more scalable compared to existing state-of-the-art techniques. Furthermore, our experiments also corroborate that Singularity can discover previously unknown performance bugs and availability vulnerabilities in real-world applications such as Google Guava and JGraphT.

Publication
In FSE 2018
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Jiayi Wei
Jiayi Wei
Research Scientist at Augment

My research focuses on supercharging ML4Code using static analysis.